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Short Abstract – The chemical master equation (CME) is a system of ordinary differential
equations that describes the evolution of a network of chemical reactions as a stochastic process.
Its solution yields the probability density vector of the system at each point in time. Solving the
CME numerically is in many cases computationally expensive or even infeasible as the number of
reachable states is huge.

We introduce the creeping window method, which computes an approximate solution of the CME
by performing a sequence of local analysis steps. In each step, only a manageable subset of states
is considered, representing a “window” in the state space. In subsequent steps, the window follows
the direction in which the probability mass moves until the time period of interest has elapsed. We
construct the window based on a discretization of the process and add/neglect states on the fly
according to their likelihoods.

In order to show the effectiveness of our approach, we apply it to examples of biochemical reaction
networks with up to 6 chemical species and 10 reactions. The experimental results show that the
proposed method speeds up the analysis considerably, compared to stochastic simulation.

Motivation. The traditional approach for a dynami-
cal model of cellular reaction networks is based on the as-
sumption that the concentrations of the chemical species
change continuously and deterministically in time. Dur-
ing the last decade, however, stochastic models with dis-
crete state spaces have seen growing interest [1–8]. The
reason is that they take into account the effects of molec-
ular noise in the cell. Molecular noise has a significant
influence on important processes such as gene expression
[9–14], decisions of the cell fate [15–17], and circadian
oscillations [18–20].

The most appropriate modeling approach for systems
that are subject to molecular noise is a discrete-state
continuous-time Markov process, also called continuous-
time Markov chain (CTMC). This is particularly evident
in the presence of intrinsic noise arising from random
microscopic events in the cell, such as the location of
molecules or the order of the reactions. As opposed to
continuous models, the discrete-state stochastic model is
able to capture the discreteness of the random events in
the cell.

The evolution of the CTMC is given by a master equa-
tion that is derived according to Gillespie’s theory of
stochastic chemical kinetics [21]. Since the state space
grows exponentially in the number of involved chemical
species, the state space of the CTMC is large, which ren-
ders its analysis difficult. Besides the computation of cu-
mulative measures such as expectations and variances of
the copy numbers of certain chemical species, the com-
putation of event probabilities is important for several
reasons. First, cellular process may decide probabilis-
tically between several possibilities, e.g., in the case of
developmental switches [2, 15, 22]. In order to verify,
falsify, or refine the mathematical model based on exper-
imental data, the likelihood for each of these possibilities
has to be calculated. But also full distributions are of
interest, such as the distribution of switching delays [12],
the distribution of the time of DNA replication initia-

tion at different origins [23], and the distribution of gene
expression products [24]. Finally, many parameter esti-
mation methods require the computation of the posterior
distribution because means and variances do not provide
enough information to calibrate parameters [25].

Analysis Methods. Two different families of compu-
tational approaches have been proposed and used to es-
timate event probabilities and approximate probability
distributions. The first kind of approach is based on
numerical simulation, i.e., the generation of many sam-
ple trajectories (or simulation runs) of the system. The
second kind of approach is based on numerical reacha-
bility analysis, i.e., the propagation of the probability
mass through the state space. The former approach is
well-known as Gillespie simulation [26], in which pseudo-
random numbers are used to simulate molecular noise.
Measures of interest are obtained via statistical output
analysis. The main advantage of simulation is that it
is easy to implement and the generation of trajectories
is not limited by the size of the state space. Moreover,
the precision level of the method can be easily adjusted
by performing more or fewer simulation runs. For the
computation of the probability of certain events, how-
ever, simulative approaches become computationally ex-
pensive, because a large number of runs have to be car-
ried out to bound the statistical error. For estimating
event probabilities, a higher precision level is necessary
than for estimating cumulative measures such as expec-
tations, and simulation becomes expensive because dou-
bling the precision requires four times more simulation
runs.

In contrast, approaches based on a numerical reacha-
bility analysis approximate probability distributions of
the CTMC. As opposed to a statistical estimation of
probabilities, which yields an indirect solution, the mas-
ter equation is numerically solved by integrating the sys-
tem’s behavior over time. Standard numerical techniques
are impractical for many systems because of the enor-
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FIG. 1: Probability distribution of monomers
and dimers in the phage λ model.
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FIG. 2: Cumulative probability distribution of the time
until the number of proteins reaches 500 for the first time
in the gene expression example.

mous size of the state space. Recently, however, more so-
phisticated numerical approximation methods have been
proposed, which solve the system in an iterative fashion
and consider only subsets of the state space during any
given time interval [27–29]. They are significantly more
efficient than global analysis because they use localiza-
tion optimizations (such as “sliding windows”) and dy-
namic adaptation (“on-the-fly” generation of windows).
These methods efficiently compute the probability distri-
bution of large CTMC at several time instances up to a
small approximation error.

Creeping Window Algorithm. We propose the creep-
ing window algorithm (CWA), which performs a sequence
of local analysis steps on dynamically constructed ab-
stractions of the system. We use adaptive uniformiza-
tion [30] to discretize the underlying process. We it-
eratively solve the discrete model and in each step we
add/neglect states on the fly depending on their likeli-
hood. Other approaches for an approximate numerical
solution of the underlying Markov chains can be found
in [28, 29]. They differ from our approach in that they
compute a finite projection of the state space that is
based solely on the structure of the underlying graph. In
our method, we add and neglect states in an on-the-fly
fashion based on the stochastic properties of the Markov
chain. Therefore, we consider a significantly smaller set
of states during a certain time interval, without being less
accurate. The projection algorithms include all states
that are reachable within a fixed path depth. In our al-
gorithm, for each single state, we dynamically decide if
it significantly contributes to the overall solution or not.
We found that this dynamic adaptation of the analysis
to be essential for efficiency.

Experimental Results For our experimental results,
we consider two examples from biology and compare the
running times of our algorithm with Gillespie simulation.
In order to achieve an appropriate statistical accuracy
with simulation, we assume a confidence level of 95%
and bound the relative width of the confidence interval
by 0.2. By assuming that the smallest event probability

that has to be estimated is γ all results of the simulation
have a “precision” of at least γ. Intuitively, we simulate
often enough to reason about events that occur with a
probability of at least γ. We therefore refer to γ as the
single event error. As opposed to that, the total approx-
imation error of the numerical method is the sum of the
approximation errors of all states considered during the
computation.

Our first example is a model of the transcription regu-
lation of a repressor protein in bacteriophage λ [31]. This
protein is responsible for maintaining lysogeny of the λ
virus in E. coli [15]. We compute the full probability
distribution at several time instances for different preci-
sion levels. The length of the time horizon is 300. Fig. 1
shows a plot of the distribution of dimers and monomers
at time instant t = 300. Below we list the running times
of our numerical method as well as the running time of
the simulation.

CWA simulation

running time
total
approx.
error

running time
single
event
error

55 min 5 sec 3 × 10−6 > 6000 h 10−8

39 min 16 sec 2 × 10−5 > 500 h 10−7

25 min 2 sec 2 × 10−4 67 h 22 min 10−6

15 min 41 sec 1 × 10−3 6 h 44 min 10−5

6 min 33 sec 7 × 10−3 40 min 10−4

3 min 12 sec 4 × 10−2 4 min 10−3

Our second example is a model for transcription of
a gene into messenger RNA (mRNA), and subsequent
translation of the latter into proteins [14]. We calculate
the distribution of the time until the number of produced
proteins exceeds 500. We compute the probability that
at least 500 proteins are in the system at 100 equidistant
time instances. Fig 2 shows the cumulative probabil-
ity distribution of the time until the number of proteins
reaches 500 for the first time (note that eventually the
threshold of 500 is reached with probability one). Below,
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we list the results for the gene expression example.

CWA simulation

running time
total
approx.
error

running time
single
event
error

4.2 sec 5 × 10−6 > 500 h 10−7

3.6 sec 5 × 10−5 > 50 h 10−6

3.0 sec 5 × 10−4 5 h 3 min 10−5

2.4 sec 4 × 10−3 30 min 18 sec 10−4

1.9 sec 4 × 10−2 3 min sec 10−3

Discussion. Even if we consider the total approxima-
tion error δ as a rough bound for the single error of each
state probability, thus favoring simulation, the speed-up
factor of the numerical approximation is large, especially
if the precision increases. The necessary precision level
up to which probability distributions are approximated

may depend on the system under study. It is, however,
important to note that the occurrence of rare biochemi-
cal events can have important effects. For instance, the
spontaneous, epigenetic switching rate from the lysogenic
state to the lytic state in phage λ-infected E. coli is ex-
perimentally estimated to be in the order of 10−7 per cell
per generation [32].

Conclusion We have demonstrated that, for the com-
putation of event probabilities, the creeping window al-
gorithm provides an efficient alternative to simulation-
based methods.

Even though simulation is widely used, the advan-
tages of numerical methods increase as more sophisti-
cated techniques become available. They reduce the com-
putational effort, especially if accurate results are de-
sired. Moreover, for the calibration of parameters many
instances of the model have to be solved and in this case
short running times for a single solution are necessary.
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